博客
关于我
LeetCode Most Common Word 最常见的词
阅读量:801 次
发布时间:2023-01-31

本文共 3035 字,大约阅读时间需要 10 分钟。

Here is an optimized version of the thought process and solution:

  • Data Preparation

    • Convert the entire paragraph to lowercase to handle case insensitivity.
    • Remove all punctuation marks (such as commas, periods, exclamation points, etc.) to isolate words.
    • Ensure words are properly separated by spaces to avoid partial words (e.g., "ball," becomes "ball").
  • Word Frequency Calculation

    • Traverse the prepared string, extracting each word by ignoring punctuation and case differences.
    • Use a hash map (dictionary) to count occurrences of each word.
    • For each character in the paragraph: If it's a letter, add it to the current word being built. If it's not a letter or reaches the end of the string, finalize the word and update its count in the hash map.
  • Filter Banned Words

    • Store banned words in a set for quick lookup.
    • Iterate through the hash map to exclude any words that exist in the banned set, keeping only valid words.
  • Determine Most Frequent Word

    • Sort the remaining words by their frequency in descending order.
    • Return the first word in this sorted list, as it by definition is unique and has the highest count according to the problem constraints.
  • Final Solution Code

    import java.util.HashMap;import java.util.HashSet;import java.util.Map;public class Solution {    public String mostCommonWord(String paragraph, String[] banned) {        // Convert paragraph to lowercase and remove punctuation        StringBuilder cleanParagraph = new StringBuilder();        for (char c : paragraph.toCharArray()) {            if (c >= 'a' && c <= 'z') {                cleanParagraph.append(c);            }        }        // Split into words        String[] words = cleanParagraph.toString().split(" +");        // Count frequency of each word        Map
    frequencyMap = new HashMap<>(); for (String word : words) { frequencyMap.put(word, frequencyMap.getOrDefault(word, 0) + 1); } // Create banned words set for quick lookup HashSet
    bannedWords = new HashSet<>(); for (String bw : banned) { bannedWords.add(bw.toLowerCase()); } // Exclude banned words and find the most frequent int maxCount = -1; String result = ""; for (Map.Entry
    entry : frequencyMap.entrySet()) { if (!bannedWords.contains(entry.getKey())) { if (entry.getValue() > maxCount) { maxCount = entry.getValue(); result = entry.getKey(); } } } return result; }}

    Explanation

    • The code first processes the input paragraph to remove punctuation and convert it to lowercase, ensuring uniformity in word processing.
    • It then splits the cleaned string into individual words and uses a hash map to count each word's occurrences.
    • Banned words are stored in a set for quick exclusion.
    • Finally, the code iterates through the frequency map, excluding banned words, and identifies the word with the highest count, which is then returned as the result.

    转载地址:http://oogyk.baihongyu.com/

    你可能感兴趣的文章
    mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
    查看>>
    mysql 通过查看mysql 配置参数、状态来优化你的mysql
    查看>>
    mysql 里对root及普通用户赋权及更改密码的一些命令
    查看>>
    Mysql 重置自增列的开始序号
    查看>>
    mysql 锁机制 mvcc_Mysql性能优化-事务、锁和MVCC
    查看>>
    MySQL 错误
    查看>>
    mysql 随机数 rand使用
    查看>>
    MySQL 面试题汇总
    查看>>
    MySQL 面试,必须掌握的 8 大核心点
    查看>>
    MySQL 高可用性之keepalived+mysql双主
    查看>>
    MySQL 高性能优化规范建议
    查看>>
    mysql 默认事务隔离级别下锁分析
    查看>>
    Mysql--逻辑架构
    查看>>
    MySql-2019-4-21-复习
    查看>>
    mysql-5.6.17-win32免安装版配置
    查看>>
    mysql-5.7.18安装
    查看>>
    MySQL-Buffer的应用
    查看>>
    mysql-cluster 安装篇(1)---简介
    查看>>
    mysql-connector-java.jar乱码,最新版mysql-connector-java-8.0.15.jar,如何愉快的进行JDBC操作...
    查看>>
    mysql-connector-java各种版本下载地址
    查看>>