博客
关于我
LeetCode Most Common Word 最常见的词
阅读量:801 次
发布时间:2023-01-31

本文共 3035 字,大约阅读时间需要 10 分钟。

Here is an optimized version of the thought process and solution:

  • Data Preparation

    • Convert the entire paragraph to lowercase to handle case insensitivity.
    • Remove all punctuation marks (such as commas, periods, exclamation points, etc.) to isolate words.
    • Ensure words are properly separated by spaces to avoid partial words (e.g., "ball," becomes "ball").
  • Word Frequency Calculation

    • Traverse the prepared string, extracting each word by ignoring punctuation and case differences.
    • Use a hash map (dictionary) to count occurrences of each word.
    • For each character in the paragraph: If it's a letter, add it to the current word being built. If it's not a letter or reaches the end of the string, finalize the word and update its count in the hash map.
  • Filter Banned Words

    • Store banned words in a set for quick lookup.
    • Iterate through the hash map to exclude any words that exist in the banned set, keeping only valid words.
  • Determine Most Frequent Word

    • Sort the remaining words by their frequency in descending order.
    • Return the first word in this sorted list, as it by definition is unique and has the highest count according to the problem constraints.
  • Final Solution Code

    import java.util.HashMap;import java.util.HashSet;import java.util.Map;public class Solution {    public String mostCommonWord(String paragraph, String[] banned) {        // Convert paragraph to lowercase and remove punctuation        StringBuilder cleanParagraph = new StringBuilder();        for (char c : paragraph.toCharArray()) {            if (c >= 'a' && c <= 'z') {                cleanParagraph.append(c);            }        }        // Split into words        String[] words = cleanParagraph.toString().split(" +");        // Count frequency of each word        Map
    frequencyMap = new HashMap<>(); for (String word : words) { frequencyMap.put(word, frequencyMap.getOrDefault(word, 0) + 1); } // Create banned words set for quick lookup HashSet
    bannedWords = new HashSet<>(); for (String bw : banned) { bannedWords.add(bw.toLowerCase()); } // Exclude banned words and find the most frequent int maxCount = -1; String result = ""; for (Map.Entry
    entry : frequencyMap.entrySet()) { if (!bannedWords.contains(entry.getKey())) { if (entry.getValue() > maxCount) { maxCount = entry.getValue(); result = entry.getKey(); } } } return result; }}

    Explanation

    • The code first processes the input paragraph to remove punctuation and convert it to lowercase, ensuring uniformity in word processing.
    • It then splits the cleaned string into individual words and uses a hash map to count each word's occurrences.
    • Banned words are stored in a set for quick exclusion.
    • Finally, the code iterates through the frequency map, excluding banned words, and identifies the word with the highest count, which is then returned as the result.

    转载地址:http://oogyk.baihongyu.com/

    你可能感兴趣的文章
    Netty 解决TCP粘包/半包使用
    查看>>
    Netty 调用,效率这么低还用啥?
    查看>>
    Netty 高性能架构设计
    查看>>
    Netty+Protostuff实现单机压测秒级接收35万个对象实践经验分享
    查看>>
    Netty+SpringBoot+FastDFS+Html5实现聊天App详解(一)
    查看>>
    netty--helloword程序
    查看>>
    netty2---服务端和客户端
    查看>>
    【Flink】Flink 2023 Flink易用性和稳定性在Shopee的优化-视频笔记
    查看>>
    Netty5.x 和3.x、4.x的区别及注意事项(官方翻译)
    查看>>
    netty——bytebuf的创建、内存分配与池化、组成、扩容规则、写入读取、内存回收、零拷贝
    查看>>
    netty——Channl的常用方法、ChannelFuture、CloseFuture
    查看>>
    netty——EventLoop概念、处理普通任务定时任务、处理io事件、EventLoopGroup
    查看>>
    netty——Future和Promise的使用 线程间的通信
    查看>>
    netty——Handler和pipeline
    查看>>
    Vue输出HTML
    查看>>
    netty——黏包半包的解决方案、滑动窗口的概念
    查看>>
    Netty中Http客户端、服务端的编解码器
    查看>>
    Netty中使用WebSocket实现服务端与客户端的长连接通信发送消息
    查看>>
    Netty中实现多客户端连接与通信-以实现聊天室群聊功能为例(附代码下载)
    查看>>
    Netty中的组件是怎么交互的?
    查看>>